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ISOMORPHISM TYPES OF TREES!
HAIM GAIFMAN AND E. P. SPECKER

1. Introduction. A free is a partially ordered system (4, <) such
that for every x €4 the set P,= {yl y <x} is well ordered by =. The
rank p(x) of x is the order type of P, (this is an ordinal number).
The rank p(T) of the tree is the least upper bound of p(x), xEA. For
every ordinal o, R(7T), or simply, R., is the set of all elements of rank
o

A subset A’ of A is full if for every x & A’ we have P,CA";if A’ is
full then the rank of an element in the subtree (4’, =) is the same as
itsrank in (4, <). A node of T is a subset N of 4 of the form {x|xE4
and Px=P,,} for some y& A. Clearly all elements of a node NV have
the same rank, and this ordinal is called the rank of N.

A path of T is a subset of 4 which is full and linearly (totally)
ordered by =. Obviously every path is well ordered by =, every
path can be extended to a maximal path and every totally ordered
subset of 4 can be extended to a path.

A normal R, tree is a tree (4, =) of rank w1 having the following
properties:

(N1) R:is of power N, for all £, 0 <£<waq1.

(N2) Nodes of rank £+41 are of power N, and nodes whose rank
is a limit ordinal (including 0) are of power 1.

(N3) If x€4 and p(x) <1 <wayr then there is a yER, for which
x<y.

(N4) Every path is of power <®.41. (Or, equivalently, every path
has order type <waii1.)

(N5) If A’ is a path of power <. then there is an x&4 such
that y=<x for all y&4’.

Normal N, trees are of power 8,;1. In the case 8,=4% condition
(N5) follows from (N3) and the notion of a “normal tree” coincides
with Kurepa's notions of “suites distinguées” [1] and “suites (s)”
[2]. (In [1] nodes of limit rank are of infinite power; no proposed
theorem is affected by this difference.) We add (NS) to get a non-
trivial generalization to higher powers.

The existence of normal N, trees implies that 8% =&, for all £<a.
Indeed (N2), (N3), and (N5) imply that lRwsl (the power of R.,) is
N¥ while by (N1) |Rw$| =N, On the other hand if for all £<a we
have N¥: =N, then N, is regular by the Konig-Jourdain theorem and
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2 HAIM GAIFMAN AND E. P. SPECKER [February

the existence of normal N, trees follows from [4]. The generalized
continuum hypothesis implies that if N, is regular, then N¥ =8, for
£ <e, hence it implies the existence of normal N, trees for regular N,.

Normal N, trees, whose existence has first been proved by N.
Aronszajn? are closely connected with the conjecture of Souslin.
This conjecture is equivalent to the statement that every normal N,
tree, (4, <), has N, pairwise incomparable elements, that is, there
is a subset A’ of A of power N; such that x<y and y<x for all
x,yEA’. All known examples of normal N, trees have this property.
Consequently, Souslin’s conjecture follows from the conjecture that
any two normal N, trees are isomorphic. The problem whether or not
this is the case is Kurepa’'s “premier probléme miraculeux” [1].

Given any two normal N, trees, T;=(4;, <,), =1, 2, and any
£ <wqq1, the trees obtained by “truncating” 77 and 7. at the “£th
level” are isomorphic; that is, letting S¢(T;) be the set of all elements
of rank <¢ in T, the trees T;(£) =(Si(Tv), =), 1=1, 2, are iso-
morphic. Moreover if £<7<w,;1 then any isomorphism between
T1(¢) and T:(£) can be extended to an isomorphism between T1(n)
and T:(n). (For the denumerable case, cf. [1, p. 102].) One might be
tempted by this to conjecture that any two normal R, trees are iso-
morphic, nevertheless the answer, given here, to the problem is nega-
tive:

THEOREM. If R¥%=N., for all £<a, then there are exactly 2Ma+1
different isomorphism types of mormal N, irees.

For two given normal N, trees T, 2=1, 2, the set of isomorphisms
from T1(¢) onto T3(£), where £ varies over all ordinals <we41, forms
a tree if the partial order relation is taken as the relation of extension.
This tree satisfies (N3) and (N5). The theorem implies that there are
T;, i=1, 2, for which this tree satisfies (N4).

The proof of the theorem which is presented here shows only that
there are at least N, different isomorphism types of normal 8, trees.
However, by an additional argument (not given in this paper) the
full theorem can be deduced from the weaker one without using any
part of the general continuum hypothesis.

The theorem follows readily from the following:

Mai~N LEMMA. If R¥:=N,, for all §<a, then one can associate with
every subset X of waq1 of power Va1 @ normal N, tree, T(X), so that
T(X) and T(X') are not isomorphic if IX NX'| <Nay1.

The theorem follows immediately from the main lemma and a re-

2 Published in [1, p. 96]. A reference to this result is overlooked in [4].
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sult of Sierpifiski [3, p. 448] which states that there is a class C of
subsets of wa41 such that | C| =Raye, | X| =Naps for all XEC and
| XNX'| <Ny for all X, X' EC which are different.

2. Sequential trees. In what follows we consider sequences of the
form (so, + * +, S * * * )r<ay Where « is any ordinal (including the
empty sequence for which a=0). If s=(so, - - -, 51, - * - h<a then
1(s) =a, I(s) is the length of s. If ¢ is a sequence and B <I(f) then 5 is
the Bth member of ¢, that is, t={f, - + -, #5, * * * Jp<ipy- If sis a se-
quence then the restriction of s to B, s|B, is the sequence ¢ such that
1(t) = Min(l(s), B) and t,=s, for all v <I(t).

A sequential tree is a tree (S, <) which satisfies the following con-
ditions:

(ST1) S is a set of sequences.

(ST2) If SES then s|BES for all B=1(s).

(ST3) s<s'iff for some B8 we have s=s'|.

It is easily seen that every sequential tree is a tree in which p(s)
=](s), the single element of rank 0 is the empty sequence, and nodes
of limit rank are of power 1. Conversely, if T=(4, <) is a tree in
which nodes of limit rank (including 0) are of power 1 then T is
isomorphic to a sequential tree. Namely, given any x& A associate
with it a sequence s whose length is p(x) such that, for all a<p(x),
Sa is the unique element of rank a+41 which is =x. In particular
every normal N, tree is representable as a sequential tree.

Let S, be the set of all sequences s satisfying the following condi-
tions:

(Sl) l(S) <Weastl-

(S2) All the members of s are ordinals <w,.

(S3) {a|s«>=0} is of power <N..

Defining “ =7 according to (ST3) it is immediate that Toa= (S, <)
is a sequential tree.

LemMmA 1. If, for all E<a, N¥: =N, then the tree T satisfies the con-
ditions (N1), (N2), (N3), and (N5).

Proor. T, satisfies (N2) and (N3) for all a. (N5) is satisfied if N,
is regular and (N1) is satisfied if N¥¢=N, for all £ <a.

T. does not satisfy (N4) since the subset of S consisting of all
sequences s for which ss=0 for all 3<I(s) is a path of power N 1.
Moreover, we have the following lemma.

LEMMA 2. If, for all £<a, W=, then every full subset of S« of
power Way1 contains a path of power Nay1.

Proor. Let S'CS, be a full subset of power Nqy1. Let S'(8) be
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the subset of all sequences s of S’ for which {'y] s.,;éO} is of order type
<B. By (83) §'=S5"(wa). If Bis a limit ordinal then S’(8) =U,<s S’(y)
(8'(0)= ). Thus S’'(wa) =Up<w, S'(B) and consequently for some
first £ S’'(§) is of power V.1 £ cannot be a limit ordinal hence
E=(¢—-1)+1. ] S'(§— 1)] =N., hence, for some 7 <way1, I(s) <7 for
all s&€S’(£—1). On the other hand, since (N1) is satisfied (by Lemma
1), {s] SESs and I(s) <9} =Upgy Ry(T.) is of power =N., hence
S = {s|s€S" () and i(s) >} is of power Nay1. Obviously S/ C.S'(£)
—S’(§—1) hence {7]&#0} is of order type £—1 whenever s&.5"’.
Again by (N1) the set {s] (p+1) } ses is of power N, hence there is a
t of length n+1 such that S”’={sls€S" and s](n+1)=t} is of
power Na1. We claim that if s€S’" and <y <I(s) then s,=0.
Otherwise 5,50 and the order type of the indices of nonzero mem-
bers of u= s] 7 is smaller than that of nonzero members of s, which is
£—1, thus {y|u,=0} is of order type <£—1. Since S’ is full #E€.5",
hence #&.S’(§—1) but /() =v =7 contradicting the choice of 7. It
follows now easily that S’’’ is totally ordered (its members are of
length Z7, they coincide for ordinals <7 and are 0 from 7 on). Since
S’ is full {s|v}ses, y<oass is a path of power Nay; contained in .

3. Composition of trees. If s is a sequence and X is a set of ordinals
then by sl X we mean the subsequence of s obtained by letting the
index range over X only; that is, if X = {ao, cee Lottt }, where
o <ay, for A<p, then s|X=(sao, Ty Say ttt Day<lia) (s]X))\=xa)‘.
We define s] X to be sl (I(s) — X) where I(s) — X is the complement of
X relative to I(s). If s]X=x1 and sl X =s? then we write s=s! *x s2,
(e.g.,if s1=(0, 1), 52=(3,3,4)and X = {O, 2 } , then s=s! *x 52, where
s=(0, 3, 1, 3, 4)). It is easily seen that for every s!, s? and X there is
at most one s such that s=s! *x s

If S' and S? are sets of sequences then we define S! *x S?
= {5 xx s?|s1ESY, s2ES2}. If T1=(S!, <) and T?=(S? Z£) are
sequential trees then T *x T2 is defined as the sequential tree
(ST xx S2, <),

The following properties follow easily:

(C1) If 5, 1€ S #x S? then s=¢iff s| X <¢| X and s| X<¢| X .

(C2) For every £ the mapping s—(s| X, s| X) is a one-to-one map-
ping of R¢(T'*x T?) onto Ry(T')XR:,(T?), where £ is the order
type of £N\X and &, is the order type of £—X.

(C3) If T" and T? are sequential trees of rank wg so is T x T2.

REMARK. The isomorphism type of the compound tree depends
only on the isomorphism types of the factors and on the set X but
not on the particular representation of the trees as sequential trees.
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LeEMMA 3. Let T'=(S', =) and T?=(S?, =) be sequential trees of
rank wqy1 and let X be a subset of Way1, then:

(I) If both T and T? satisfy any of the five conditions (Nj),
j=1,-..,5,then U=T"'%x T? salisfies the same condition.

(IT) If | X| =Nai1 and T* satisfies (N4) so does U.

Proor oF (I). For every £ <wqq1 let £ be the order type of £MNX
and £, the order type of £¢—X.

(N1) If £>0 then either £ >0 or £,>0, hence if T* and T? satisfy
(N1) it follows from (C2) that U satisfies it as well. (Note that in
every sequential tree Ry has one member, namely, the empty se-
quence.)

(N2) A node of U of rank £+41 is of the form 4= {s] sEStxx S?,
I(s)=£¢4+1 and sl£=t}, where ¢ is some fixed sequence of S! #x S?
whose length is £. Putting ¢!=¢| X and 2=¢| X it follows that {!€.SY,
t* € S? and that A! = {sls es, I(s)=&+1 and s|£1 = tl}
and 4?= {slsES2, I(s) =&s+1 and sl £2=12} are nodes of T* and T2
ofranks £;-+1and £+ 1,respectively. If E§E X then 4 = {sl *xt2| stEA }
and if §€EX then A= {#! xx s?|s2€A42}. It follows that either |4|
=|A4!] or |4|=]|A?|. Thus if (N2) holds for both T* and T* we
have | 4| =N.; nodes of limit rank have power 1 since U is a sequen-
tial tree, hence U satisfies (N2).

(N3) If SER(U) and §=7n<ways then s'=s|XERy(TY) and
52=5I7(-€R22(T2). If both T! and T2 satisfy (N3) then there are
PER, (TY) and *ER,,(T?) such that s'=<¢! and s2=¢% From (C2)
and (C1) it follows that t=1! *x 2ER,(U) and s =t.

(N4) If both T* and 7% satisfy (N4) so does U. This follows from
(II) of the present lemma, and the fact that either X or wey1—X is
Of power Na+1 and 71 *x T2=7T7? * (g +1—X) T

(NS) Let A be a totally ordered set in U of power <N,. Let £ be
the least upper bound of the ranks of the members of 4. Then
A'={5|X}.es and A2= {5| X},e4 are totally ordered sets in 7" and
T2, respectively, and &, &, are the respective least upper bounds of
the ranks of the members of 4! and A42. If (N5) holds for both T!
and T2 then there are {'&.S! and £2&€.5? such that {'=s for all s€A!
and f2=s for all s&A42 Moreover, as is easily seen, ¢! and 2 can be
chosen to be of ranks £ and &, respectively. From (C2) and (C1) it
follows that t=¢! *x 12&R:(U) and t=s for all sEA4.

Proor or II. Let 4 be a path of U of order type &. {sl X}.GA isa
path of 77 of order type &. If £=wey1 and IX | =N, then &= waqs.
Thus if every path of T4 1is of order type <we1 the same holds for U.

4. A class of normal trees. The following assumptions are made
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throughout this section: « is such that, for all £ smaller than «,
N¥%:=N,. T,=(S, =) is the sequential tree defined by (S1)—(S3) of
the previous section. T is some fixed normal 8, tree. For every
Y Cwai1 we define T(Y) to be T *y To. X is a subset of way1 of power
Ra.;.l and T(X) = (A, é ).

LemMMA 4. T(X) is a normal N, tree.

Proor. By Lemma 1 T, satisfies (N1), (N2), (N3) and (N5),
hence by Lemma 3 (I) these hold also for T(X). Since (N4) holds for
T and [Xl =Nop1 (N4) holds for T(X) by Lemma 3 (II).

Our aim is to show that as X varies over subsets of w.41 the trees
T(X) satisfy the properties mentioned in the main lemma of the
introduction. This is done in the following two lemmas.

LEMMA 5. There is a full subset B in T(X), of power Noy1, such that in
the subtree (B, =) every node N is of power 1 whenever the rank of

N, p(N), is £+1 and §EX.

ProoF. Put B={s|s€4 and s,=0 whenever NG X}. It is easily
seen that B is a full set of power 8, (B=A4'*x O, where
T=(A’, £) and O, is the path of T consisting of all sequences of
length <way1 which are always 0. If s and ¢ are members of B of
length £41 such that sl £=t| £, then, if £EX we must have sg=1;=0
and consequently s={. Thus every node of rank £+1, where §GEX
is of power 1.

(Since every full subset forms a sequential tree the same is trivially
true for nodes of limit rank.)

LeEmMMA 6. Let X' Cway1, and assume that there is a full subset, B, of
A, of power Noy1, such that every node N in (B, <) for which p(N)
=f+1and §GEX', is of power 1. Then |XﬂX’| =N

Proor. By contradiction. Assume that | XNX'| <Nay1. There is
an ordinal 7 <we41 such that XNX’Cy. Since R,(T(X)) is of power
N, there is a tER,(T(X)) such that the set {xlsEB, and t<s or
s=t} is of power N..;. This set is also full and it determines a sub-
tree in which every node N such that p(N)=£41 where £ X' — X
is of power 1. (This is so since every node of rank =<7 is of power 1,
while for A>% if NEX’'—X then N&X'.) Therefore without loss of
generality we can assume that XNX'= .

If s and ¢ are two incomparable elements of B (i.e., s£f and t£s)
then there is a first £ such that £<I(s), I(f) and s;t;. The sequences
s] (¢+1) and t| (¢+1) are two different sequences belonging to a
single node of (B, £) of rank £+1, hence £&€X’ and consequently
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£ X. This shows that whenever s and ¢ are incomparable elements
of B then s| X and t| X are incomparable elements of T. Now con-
sider B’ = {s| X }scp. B’ is a full subset of Sa. If | B’| <Nay1 then for
some tE B’ there is a subset D of B such that | D| =N.;1 and 5| X=¢
for all s&D. It follows that D cannot contain incomparable elements.
Hence, it is totally ordered, contradicting the property (N4) which
holds for T(X). If IB’l =N,41 then by Lemma 2 it contains a path
D', of power Nay1. The set D of all sequences s for which s| XED’ is
again of power 8.1 and has no incomparable elements, which yields
the same contradiction.

From Lemmas 5 and 6 it follows immediately that if ¥, ¥’/ Cwaus,
| Y| =]Y'| =Rat1and | YNV’ <N,y then T(Y) and T(Y’) are not
isomorphic. Thus our main lemma is proved, and this, as indicated
in the introduction, implies the required result.
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