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ISOMORPHISM TYPES OF TREES' 

HAIM GAIFMAN AND E. P. SPECKER 

1. Introduction. A tree is a partially ordered system (A, <) such 
that for every x CA the set P. = { y I y <x } is well ordered by _?. The 
rank p(x) of x is the order type of P. (this is an ordinal number). 
The rank p(T) of the tree is the least upper bound of p(x), xCA. For 
every ordinal a, Ra(T), or simply, Ra, is the set of all elements of rank 
oa. 

A subset A' of A is full if for every xzA' we have PICA'; if A' is 
full then the rank of an element in the subtree (A', < ) is the same as 
its rank in (A, <). A node of Tis a subset N of A of the form {x| xEA 
and P-=P,1} for some yEA. Clearly all elements of a node N have 
the same rank, and this ordinal is called the rank of N. 

A path of T is a subset of A which is full and linearly (totally) 
ordered by ?. Obviously every path is well ordered by _, every 
path can be extended to a maximal path and every totally ordered 
subset of A can be extended to a path. 

A normal Ka tree is a tree (A, < ) of rank c,,+, having the following 
properties: 

(N1) Ra is of power Ma for all i, 0 < t <Wa?l 

(N2) Nodes of rank t+1 are of power R,, and nodes whose rank 
is a limit ordinal (including 0) are of power 1. 

(N3) If x CA and p(x) <,q < co+, then there is a yER,, for which 
x<y. 

(N4) Every path is of power <N,,+,. (Or, equivalently, every path 
has order type <Oa?i) 

(N5) If A' is a path of power <PRa thenl there is an xEA such 
that y?x for all yCA'. 

Normal K,, trees are of power K?1. In the case R;a=t;o condition 
(N5) follows from (N3) and the notion of a "normal tree" coincides 
with Kurepa's notions of "suites distinguees" [l] and "suites (s)" 
[2]. (In [1] nodes of limit rank are of infinite power; no proposed 
theorem is affected by this difference.) We add (N5) to get a non- 
trivial generalization to higher powers. 

The existence of normal R,, trees implies that 8 = , for all t <a. 
Indeed (N2), (N3), and (N5) imply that IR,t| (the power of R,) is 
N N while by (N1) IRt I = a. On the other hand if for all <o<a we 
have RN = H_ then Ma is regular by the K6nig-Jourdain theorem and 
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2 HAIM GAIFMAN AND E. P. SPECKER [February 

the existence of normal M. trees follows from [4]. The generalized 
continuum hypothesis implies that if Ma is regular, then 't =- for 
t <a, hence it implies the existence of normal R. trees for regular k. 

Normal No trees, whose existence has first been proved by N. 
Aronszajn2 are closely connected with the conjecture of Souslin. 
This conjecture is equivalent to the statement that every normal No 
tree, (A, < ), has N, pairwise incomparable elements, that is, there 
is a subset A' of A of power N, such that x<y and y<x for all 
x, yEA'. All known examples of normal 2o trees have this property. 
Consequently, Souslin's conjecture follows from the conjecture that 
any two normal No trees are isomorphic. The problem whether or not 
this is the case is Kurepa's "premier probleme miraculeux" [1]. 

Given any two normal Ha trees, T-=(As, vi), i= 1, 2, and any 
<w9a+1 the trees obtained by "truncating" T1 and T2 at the "tth 

level" are isomorphic; that is, letting St(Ti) be the set of all elements 
of rank <t in Ti, the trees Ti(t)=(Sj(Ti), ;), i=1, 2, are iso- 
morphic. Moreover if ?<W( i then any isomorphism between 
T1( ) and T2(Q) can be extended to an isomorphism between T1(q) 
and T2(,q). (For the denumerable case, cf. [1, p. 102].) One might be 
tempted by this to conjecture that any two normal N., trees are iso- 
morphic, nevertheless the answer, given here, to the problem is nega- 
tive: 

THEOREM. If M = a for all t<oa, then there are exactly 24a+i 
different isomorphism types of normal N. trees. 

For two given normal Ha, trees Ti, i- 1, 2, the set of isomorphisms 
from TQ(t) onto T2(Q), where t varies over all ordinals <?Oal+, forms 
a tree if the partial order relation is taken as the relation of extension. 
This tree satisfies (N3) and (N5). The theorem implies that there are 
Ti, i= 1, 2, for which this tree satisfies (N4). 

The proof of the theorem which is presented here shows only that 
there are at least Na+2 different isomorphism types of normal Na trees. 
However, by an additional argument (not given in this paper) the 
full theorem can be deduced from the weaker one without using any 
part of the general continuum hypothesis. 

The theorem follows readily from the following: 

MAIN LEMMA. If bt ' a, for all t <a, then one can associate with 
every subset X of w+1 of power N.+1 a normal N;a tree, T(X), so that 
T(X) and T(X') are not isomorphic if I XnX'I <b4r+1. 

The theorem follows immediately from the main lemma and a re- 

2 Published in [1, p. 96]. A reference to this result is overlooked in [4]. 



x964] ISOMORPHISM TYPES OF TREES 3 

sult of Sierpin'ski [3, p. 448] which states that there is a class C of 
subsets of wc,+, such that I Cj = N+2, IXI = N+1 for all XEC and 
I XC\X'j <K+1 for all X, X'CC which are different. 

2. Sequential trees. In what follows we consider sequences of the 
form (SO, . . ., sx, . . )X<a, where a is any ordinal (including the 
empty sequence for which a= O). If s-=(sO, * * *, sx, * * * )x<,y then 
l(s) =a, I(s) is the length of s. If t is a sequence and j3<l(t) then to is 
the 3th member of t, that is, t (to, * * *, to, * * * )0<1(t). If s is a se- 
quence then the restriction of s to ,B, s jO, is the sequence t such that 
l(t)-=Min (l(s), i3) and t. = s, for all y < I(t). 

A sequential tree is a tree (S, ?) which satisfies the following con- 
ditions: 

(STI) S is a set of sequences. 
(ST2) If sCS then s|6 ,ES for all l < I(s). 
(ST3) s_s' iff for some we have s=s'|i3. 
It is easily seen that every sequential tree is a tree in which p(s) 

-I(s), the single element of rank 0 is the empty sequence, and nodes 
of limit rank are of power 1. Conversely, if T= (A, <) is a tree in 
which nodes of limit rank (including 0) are of power 1 then T is 
isomorphic to a sequential tree. Namely, given any xeA associate 
with it a sequence s whose length is p(x) such that, for all ao<p(x), 
Sa is the unique element of rank a+1 which is ?x. In particular 
every normal K,y tree is representable as a sequential tree. 

Let S,, be the set of all sequences s satisfying the following condi- 
tions: 

(Si) I(s) <&)a+1 

(S2) All the members of s are ordinals <wa. 

(S3) {I a say #5O } is of power < t a. 

Defining " ? " according to (ST3) it is immediate that Ta (Sa, _ ) 
is a sequential tree. 

LEMMA 1. If, for all t <a, N"t = P, then the tree Ta satisfies the con- 
ditions (Ni), (N2), (N3), and (N5). 

PROOF. Ta satisfies (N2) and (N3) for all a. (N5) is satisfied if a 
is regular and (N1) is satisfied if N =- a for all <a. 

Ta does not satisfy (N4) since the subset of S consisting of all 
sequences s for which sB=O for all j3<i(s) is a path of power N;+i. 
Moreover, we have the following lemma. 

LEMMA 2. If, for all <a, t- =_ then every full subset of Sa of 
power ;a+1 contains a path of power Ra+1. 

PROOF. Let S'CSa be a full subset of power ;+i. Let S'(f) be 
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the subset of all sequences s of S' for which { I j s7 # 0 } is of order type 
<,B. By (S3) S' = S'(co,). If ,B is a limit ordinal then S'(,B) = U.<# S'('y) 
(S'(0) = 0). Thus S'(wc) = Uo<,,, S'(j3) and consequently for some 
first t S'(t) is of power a t cannot be a limit ordinal hence 

=(-i)+i1. IS(v-)| <ag hence, for some 71 <Wa+l, l(s) < for 
all sCS'( - 1). On the other hand, since (N1) is satisfied (by Lemma 
1), {sI sESa and l(s) <Yn} =Ur6,q R (Ta) is of power < a, hence 
SI= { s I s C S'(t) and I (s) > 77 } is of power a+1. Obviously S" C S' (0) 
-S'( -1) hence {I y I s, 5 O } is of order type -1 whenever s C S". 
Again by (N1) the set {sI (n1+7) } s",s- is of power ka, hence there is a 
t of length 77+I such that S"'= {sIsCS" and si (7+1)=t} is of 
power Na+l. We claim that if sES"' and 71<?y<l(s) then s7=O. 
Otherwise s,zO and the order type of the indices of nonzero mem- 
bers of u = s Py is smaller than that of nonzero members of s, which is 
i-1, thus {y I u, 7 } 0 } is of order type < i-1. Since S' is full u C S', 
hence uCS'( - 1) but l(u) =-y >7 contradicting the choice of 77. It 
follows now easily that S"' is totally ordered (its members are of 
length >-71, they coincide for ordinals <77 and are 0 from 77 on). Since 
S' is full { sl Iy } s"s't, 7<,oa +1 is a path of power N a+1 contained in S'. 

3. Composition of trees. If s is a sequence and X is a set of ordinals 
then by s X we mean the subsequence of s obtained by letting the 
index range over X only; that is, if X= {aoy, . . *, ax, . }, where 
ax < a, for X<g,, then SIX=(SaO, , * * , Sax, * * *)aX<l(s), (SiX)X=Sax. 
We define sI X to be sI (I(s) -X) where i(s) -X is the complement of 
X relative to i(s). If sIX=sl and sI X=s2 then we write s=sl *x s2. 
(e.g., if s = (0, 1), s2.= (3, 3, 4) and X= {0, 2 }, then s = s' *x s2, where 
s= (0, 3, 1, 3, 4)). It is easily seen that for every s', S2 and X there is 
at most one s such that s = s' *x S2. 

If S' and S2 are sets of sequences then we define S' *x S2 
= {S *x S21SS1l, s2ES2}. If T'= (S', <) and T2=(S2, <) are 
sequential trees then T' *x T2 is defined as the sequential tree 
(S' *x S2, <). 

The following properties follow easily: 
(Ci) If s, tGS' *x S2 then s<t iff s X<t|X and sl Y<tI X. 
(C2) For every t the mapping s->(s X, sI X) is a one-to-one map- 

ping of Rt(T' *x T2) onto Re,(Tl) XRe2(T2), where 4j is the order 
type of CnX and 42 is the order type of -X. 

(C3) If T' and T2 are sequential trees of rank co so is T' *x T2. 
REMARK. The isomorphism type of the compound tree depends 

only on the isomorphism types of the factors and on the set X but 
not on the particular representation of the trees as sequential trees. 
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LEMMA 3. Let T' = (SI, < ) and T2 = (S2, < ) be sequential trees of 
rank Oa+l and let X be a subset of Wa+1, then: 

(I) If both T' and T2 satisfy any of the five conditions (Nj), 
j= 1, * * *, 5, then U = T' *x T2 satisfies the same condition. 

(II) If I XI = a+, and T' satisfies (N4) so does U. 

PROOF OF (I). For every t <Wa+l let {I be the order type of tnX 
and 42 the order type of -X. 

(N1) If >O0 then either tj>O or 42>O, hence if T' and T2 satisfy 
(N1) it follows from (C2) that U satisfies it as well. (Note that in 
every sequential tree Ro has one member, namely, the empty se- 
quence.) 

(N2) A node of U of rank +1 is of the form A = {sI sCSI *x S2, 

I(s) = +1 and sJ I=t}, where t is some fixed sequence of S1 *x S2 
whose length is t. Putting t1=tIX and t2=tl X it follows that t1'S', 
t2 C S2 and that A1 = {sls C S', I(s) = $, + 1 and sI, = t'} 
and A2= {sIsCS2, I(s)= 2+1 and sI 2=t2} are nodes of T' and T2 
of ranks 41+ land 42+ 1,respectively. If tGXthen A = s *xt2 I s'CA } 
and if (EEX then A_= {t1 *X s21s2EA2}. It follows that either |A| 
=IA1I or |Al =A21. Thus if (N2) holds for both T' and T2 we 
have I A | =a; nodes of limit rank have power 1 since U is a sequen- 
tial tree, hence U satisfies (N2). 

(N3) If sCRJ(U) and <q<Wa+l then s1=sIXCRtj(T1) and 
s2=s |CRt2(T2). If both T' and T2 satisfy (N3) then there are 
t'ER,7(Tl) and t2CR12(T2) such that sl<tl and s2?t2. From (C2) 
and (C1) it follows that t=t' *x t2CRJ(U) and s_t. 

(N4) If both T' and T2 satisfy (N4) so does U. This follows from 
(II) of the present lemma, and the fact that either X or Wa+l-X is 
of power Na+l and T' *x T2= T2 *(wa?1-X) T1. 

(N5) Let A be a totally ordered set in U of power <a. Let t be 
the least upper bound of the ranks of the members of A. Then 
Al= {s X}seA and A2=- {s X } 8EA are totally ordered sets in T' and 
T2, respectively, and 41, t2 are the respective least upper bounds of 
the ranks of the members of A1 and A2. If (N5) holds for both T' 
and T2 then there are t1CS' and t2eS2 such that t?>s for all sEAA 
and t2>s for all sCA2. Moreover, as is easily seen, t' and t2 can be 
chosen to be of ranks 4j and 42, respectively. From (C2) and (Cl) it 
follows that t=t' *x t2ERe(U) and t?s for all sEA. 

PROOF OF II. Let A be a path of U of order type t. { sI X}8eA is a 
path of T' of order type 41. If t ?wa+l and I XI = Na+l then 4,> a+l 
Thus if every path of T1 is of order type <Wa+l the same holds for U. 

4. A class of normal trees. The following assumptions are made 
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throughout this section: ac is such that, for all t smaller than a, 
-at =Na. Ta = (Say ? ) is the sequential tree defined by (Sl)-(S3) of 

the previous section. T is some fixed normal ka tree. For every 
Y-Ca+l we define T( Y) to be T *y Ta. X is a subset of 0a+1 of power 
Ka+, and T(X) = (A, _ ). 

LEMMA 4. T(X) is a normal Ma tree. 

PROOF. By Lemma 1 Ta satisfies (Ni), (N2), (N3) and (N5), 
hence by Lemma 3 (I) these hold also for T(X). Since (N4) holds for 
T and I XI = a1+ (N4) holds for T(X) by Lemma 3 (II). 

Our aim is to show that as X varies over subsets of ,a+l the trees 
T(X) satisfy the properties mentioned in the main lemma of the 
introduction. This is done in the following two lemmas. 

LEMMA 5. There is a full subset B in T(X), of power S such that in 
the subtree (B, <) every node N is of power 1 whenever the rank of 
N, p(N), is t+1 and EX. 

PROOF. Put B= sI s eA and sx =0 whenever X EX}. It is easily 
seen that B is a full set of power N;a+1 (B =A' *x Qa, where 
T= (A', < ) and Qa is the path of T consisting of all sequences of 
length <?a+l which are always 0. If s and t are members of B of 
length +1 such that sI tj I, then, if t EEX we must have st = tt = O 
and consequently s = t. Thus every node of rank +1, where t EX 
is of power 1. 

(Since every full subset forms a sequential tree the same is trivially 
true for nodes of limit rank.) 

LEMMA 6. Let X' Cqt+,, and assume that there is a full subset, B, of 
A, of power K+1, such that every node N in (B, _ ) for which p(N) 
- + 1 and A IX', is of power 1. Then I XnX' I = Na,+. 

PROOF. By contradiction. Assume that IXnX'I < a1 There is 
an ordinal 77 <wa+ such that XnX'C'7. Since R,(T(X)) is of power 
N;a there is a tER,(T(X)) such that the set {slsEB, and t?s or 
s< t } is of power + This set is also full and it determines a sub- 
tree in which every node N such that p(N) = t?+1 where t EX'-X 
is of power 1. (This is so since every node of rank <-77 is of power 1, 
while for X>77 if XEX'-X then XEIX'.) Therefore without loss of 
generality we can assume that XnX'= 0. 

If s and t are two incomparable elements of B (i.e., s$t and t$s) 
then there is a first t such that t <I(s), I(t) and s Ltt. The sequences 
si ( +1) and tI ( +1) are two different sequences belonging to a 
single node of (B, _) of rank +1, hence tEX' and consequently 
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t X. This shows that whenever s and t are incomparable elements 
of B then sj X and t I X are incomparable elements of T. Now con- 
sider B'-= s I X }I cB. B' is a full subset of Sa. If I B'| < i+, then for 
some tCB' there is a subset D of B such that j DI =|- + and sJ X = t 
for all sCD. It follows that D cannot contain incomparable elements. 
Hence, it is totally ordered, contradicting the property (N4) which 
holds for T(X). If I B'I =|i+ then by Lemma 2 it contains a path 
D', of power + The set D of all sequences s for which s| XCD' is 
again of power i+, and has no incomparable elements, which yields 
the same contradiction. 

From Lemmas 5 and 6 it follows immediately that if Y, Y' Cc+1, 
I Y| - Y'|- = + and j YG Y'J < ?,+i then T(Y) and T(Y') are not 
isomorphic. Thus our main lemma is proved, and this, as indicated 
in the introduction, implies the required result. 
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